Improving Nutrition and Income Generation with African Indigenous Vegetables: Selected Lessons Learned

Jim Simon, PI, Rutgers; Steve Weller, co-PI, Purdue; Dan Hoffman, co-PI, Ramu Govindasamy, Emil Van Wyk, AgriSmart, Zambia; Fekadu Dinssa, World Vegetable Center; Naman Nyabinda, AMPATH-Kenya; Martins Odendo & Christine Ndinya, KALRO-Kenya and David Byrnes, PA; Rutgers, Xenia Morin, Rutgers; Qingli Wu, Rutgers; Steve Yaninek, Purdue; Linnet Gohole, Eldoret

Obj. 1 Hypothesis: Appropriate interventions can increase access to and consumption of AIVs among producers & consumers in Kenya & Zambia.

Lesson 1. Developing & identifying the most effective intervention methods toward improved access, affordability, availability, and adoption of AIVs must be based on solid survey consumer data

Pilot survey's conducted indicated:

- AIVs very popular- but not consumed regularly!
- 2. Kenya's and Zambians would opt to consume AIVs (at greater frequency and quantities) but don't due to issues of access, affordability, availability, with many unaware of their nutritional benefit.

3. Preference for specific AIVs and their popularity drives our R&D.

AIV	Rarely	Sometimes	Everyday
Green Maize (fresh)	66.7	29.4	3.9
Amaranth	24.1	69.0	6.9
Nightshade	46.2	53.8	0
Spider Plant	39.1	60.9	0
Cowpea	59.1	40.9	0
Jute Mallow	23.1	76.9	0
Kale	26.1	69.6	4.3
Sweet potato leaves	28.6	71.4	0
Orange sweet potato	64.3	35.7	0
Okra	26.9	73.1	0
Ethiopian mustard	35.3	64.7	0
African eggplant	41.4	58.6	0
Other AIVs	28.6	71.4	0

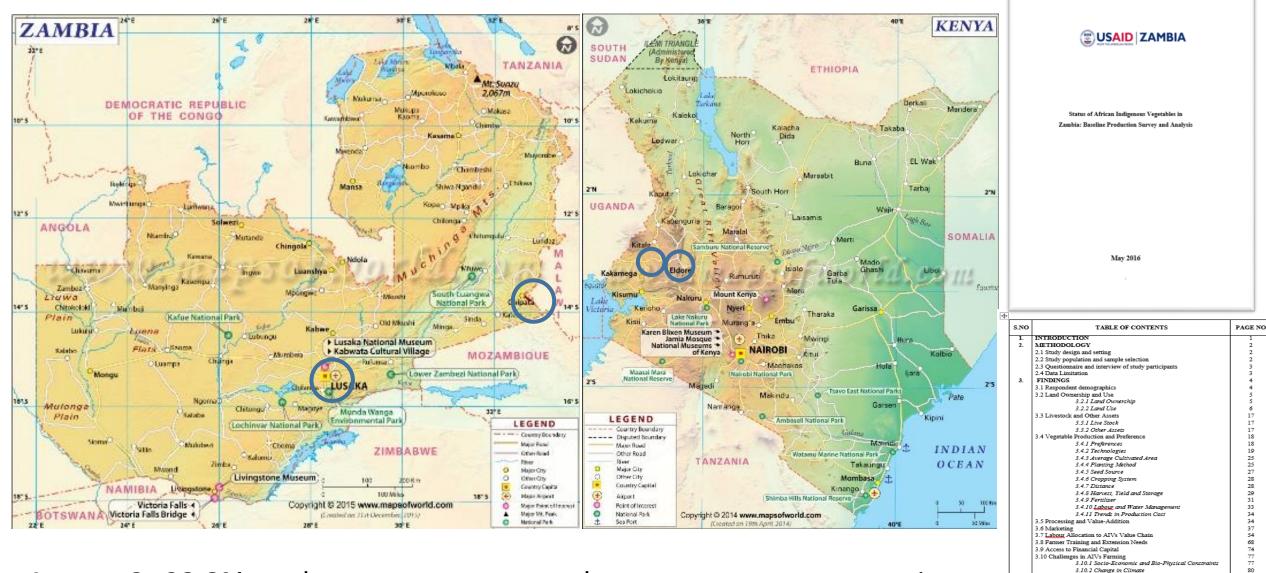
Women's Dietary Diversity

Lessons Learned from Pilot Study in Kenya and Zambia

- Collected data on household consumption and dietary diversity.
- Data were used to inform subsequent baseline data collection conducted in 2016

Average score of WDD was below 5, indicating low dietary diversity WDD is a robust outcome that will allow for differentiation between

WDD is a robust outcome that will allow for differentiation between groups studied in 2017 and 2018.


Consumer Surveys to compare effect of production and nutrition-education interventions

50 pilot survey of households in Kenya and Zambia were completed to guide our larger one. 500 households with at least one woman of childbearing age and at least one child were surveyed in both Kenya and Zambia in 2016 to evaluate baseline AIV consumption in communities prior to intervention activities. 125 households will now either be provided with: (T1) Nutrition education intervention activities; (T2) Production intervention activities; (T3) Both types of intervention activities; and (T4) A Control group treatment

Quadrate 1- CONTROL GROUP- They are found in similar exposure and knowledge on AIVs	Quadrate 3- TREATED GROUP- they are found in similar exposure and knowledge on AIVs			
AIV production sites	AIV production sites			
 Will NOT be given any intervention -*Being monitored on nutritional aspects * Suitable Site selected: TRANS NZOIA 	 They will be give behavioral change communication as an intervention *Being monitored on nutritional aspects * Suitable Site selected: BUNGOMA 			
Quadrate 2- CONTROL GROUP- They are found in similar exposure and knowledge on AIVs AIV production sites	Quadrate 4- TREATED GROUP- They are found in similar exposure and knowledge on AIVs AIV production sites			
- ONLY PRODUCTION intervention will be given to the populace of the region	- Will be given both PRODUCTION SKILLS and BEHAVIORAL CHANGE COMMUNICATION			
Being monitored on nutritional aspects				
Suitable Site selected: KISUMU/NANDI				
	Being monitored on nutritional aspects			
	Suitable Site selected: BUSIA			
Follow-up consumption surveys to be conducted following intervention activities to quantitatively evaluate the effect of				

each intervention approach.

Sites of Surveys and Interventions in Zambia and Kenya

3.10.3 Implications due to Climate Chang

3.10.4 Actions Taken to Minimize Impac

3.10.5 Reason for Change

11 Household Demographics

81

82

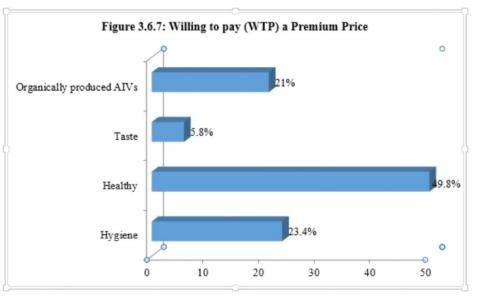
82 83

Lesson 2: *98.8%* producers want access to better management practices, technology and pest management

Obj. 2: Hypothesis: Appropriate promotion and expansion of availability of AIVs at the local level will strengthen market access and sales for producers of AIVs:

In each Zambia and Kenya, <u>300 AIV producers and 75 intermediaries</u> <u>were surveyed</u> to identify the most substantial bottlenecks in productivity to guide the focus of production interventions.

Lesson 3: Growers report AIV requires same level of management and skills as vegetables and report difficulties in: *Access to seeds and plant materials; unaware of improved germplasm; identification of problems with some current AIVs; high price of fertilizers and farm credit limiting, and insect problematic with a few AIVs. **75% of producers cant access credit** (agric. inputs after medical bills identified as primary use of credit)

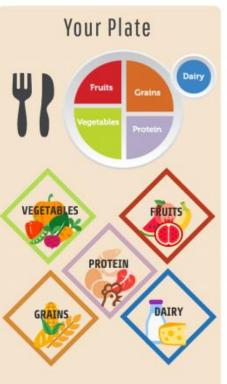


S.No	Particulars	Very much	Much	Moderate	Alittle	Not at all	Total
1.	Amaranth	119	56	35	1	1	212
	56	56.1	26.4	16.5	0.5	0.5	100
2.	Nightshade	11	10	4	1	0	26
	16	42.3	38.5	15.4	3.8	0	100
3.	Spider plant	46	10	14	4	0	74
	. 16	62.2	13.5	18.9	5.4	0	100
4.	Compea	75	31	12	- 4	0	122
	96	61.5	25.4	9.8	3.3	0	100
5.	Jute mallow	23	8	4	1	0	36
_	56	63.9	22.2	22.2 11.1	2.8	0	100
6.	Kale	17	7	4	2	0	30
	56	56.7	23.3	13.3	6.7	0	100
7.	Sweet Potato Leaves	165	30	17	2	6	220
		75	13.6	7.8	0.9	2.7	100
\$.	Orange Sweet Potato	108	21	14	38	0	0 181
	96	59.7	11.6	7.7	21	0	100
9.	Okra	83	38	5	3	1	130
	36	63.8	29.2	3.8	2.3	0.8	100
10.	Other	8	10	1	0 0	15	
-	76	42.1	52.6	5.3	0	0	100

The buyers were also asked to rank their preferences in characteristics that they lock for when they buy AIVs (Table 3.6.18). Appearance (14%) and freshness (18.4%) were ranked the most for amaranth. These two characteristics were ranked at 36% each for nightshade, at 29% and 20% for splice plant. Two anturitive quality (21%) and freshness (5%) for compea. Appearance (19%) and marketability (11%) topped the list for jute mallow, and for kale it was 27% and 13% respectively. Appearance (14%) and tolerance towards diseases and pests (8%) topped the list for sweet potato leaves. Nutritive quality (24%) and appearance (17%) topped the list for connect evotat and it was freshness (20%) and sppearance (20%) for okra. In general the top two characteristics that the buyers lock for when they buy AIVs is appearance and freshness. A vast majority (88%) of the respondents felt that there was no difference in overall farming experience between the production and sale of AIVs compared to other vegetable (Table 3.6.5).

S.NO	Particulars	Frequency	Percent
1.	No	256	88
2.	Yes	35	12
	Total	291	100

The respondents attributed their willingness to pay a premium (Figure 3.6.7) for certain improved characteristics like healthiness (50%), hygiene (23%), taste (6%), and organically produced AIVs (21%) if they were to buy their AIVs in the market.


Amongst the respondents, about 61% had sold AIVs in the past 2 years (Table 3.6.6). Orange sweet potato ranked first at 318 kg in terms of quantity sold (Table 3.6.7) in the last completed

Nutrition Education Intervention (BCC)

- 500 Individuals in Kenya and Zambia will be provided with on-going nutrition education trainings (BCC):
- Nutrition content of AIVs
- Recommended intake amount
- Health Applications
- Recipes and meal preparations

Lesson 4 Learned: Parents, grandparents and even school teachers far more excited about AIVs when they understand their nutritional content! Source of pride, source of tradition, easy to collect yet still perceived to be wild harvested not cultivated and *"undervalued"*.

2 in 8 People Are Eating The Recommended Amount of Vegetables

Obj. 3. Determine best management practices for AIV production, increase capacity and access to AIVs · Cultural practices

Participatory research prioritized by survey results to • provide accurate information and recommendations •

for farmers

- Management technologies
- Improved seed & storage
- Integrated pest management
- Irrigation and drought tolerance

Lesson 5: 90.9% producers ant better AIV seed quality. Lesson 6: 75% of producers want training for production during dry seasons & drought.

common pests and diseases of amaranth, nightshade and spider plant in East Africa

J.S. Yes

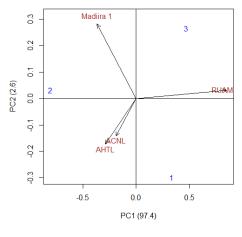
Common insect peaks of inclutional African hardy separations depend on the crop and coop provids hards, bearing can be an enabled by cohomes (legge excerption), guids (Bearts leaving) and cristeaus that instally the site and attack the plants throe beards the source or at growing elect. Uniterastic of the bearts and department to determ setting galanticularly spacing plants, along with instal, both densets thou, e.g., inclution, and the and blanks, e.g., spacialized quanticity, that prefer symptems and enarge plants and enarge plants.

Ju the cost proofs and enters the regardine stage, a complex of follow pass can be from the part of the parts of the form the parts of the parts and the parts are brown, the parts are parts of the parts are found on all of these cross, justice parts have the fevere black parts are parts and the parts are found on all of these cross, justice numbers of parts, but not all the same species, e.g., <u>leading</u> on algohimmer distance.

As the crop matures and begin producing flowers followed by seeds, the complex of petst again changes. Caterpliant, <u>bagrads</u> bugs, and birds feed on the flowers, thruts and seeds, and can cause serious demages. Many other instruct, particularly <u>benjaberons</u> (true bugs), also feed on the seeds, but these scualty do not cause serious damage.

Other insects found on traditional African leafy vegetables including writteflies, strikkivgs, <u>throp</u>, leafhoppers, leaf freding beecks and grasshappers, but these insects rarely cause serious problems on a consistent basis.

Common Pests	Common Diseases	
New seeding	gs and early growth stage	
Cutworm caterpillars Damping off		
White grub beetles		
Crickets		
Fies beetles		
Bagrade bugs		
Birds		
Vegetat	we to flowering stage	
Aphids	Leaf spots/early hight	
Flea bestles	Bacterial witt	
Caterpillers	Late bilght	
Stem weevils	Stem rot	


Action of the second se

Obj. 4. Evaluation of nutrient composition of AIVs:

Determining the content and stability of micronutrients in AIVs

Lesson 7: Selection and breeding for micronutrients possible. 2017. Brynes, D., F. Dinssa, S. Weller and J.E. Simon. Elemental micronutrient content and horticultural performance of vegetable amaranth types. JASHS: (in press). Result: A new high Fe Amaranth being developed by us with new variety release expected in 2017/2018. Lesson 8: Many of the AIVs are Nutrient rich and can be submitted to USDA for inclusion.

Result: Spiderplant flower rapidly ca. 1 month field limiting production. We then screened populations for photoperiodicity. In 2016 we identified spiderplants that remain vegetative for >6 months, and now field testing. This could be transformative!

AMMI resu	lts						
	Fe	Ca	Mg	Zn	Total Yield	Height	Spread
Env	<.0001	0.0009	<.0001	<.0001	<.0001	<.0001	<.0001
rep(env)	0.6617	0.264	0.0194	0.0113	0.045	0.0453	0.0001
Gen	<.0001	0.002	0.0366	0.004	<.0001	<.0001	0.0004
env*gen	0.0004	0.0009	0.0624	0.3097	0.0085	0.0035	0.088

Results of additive main effects and multiplicative interaction effect (AMMI) analysis of the four accessions which were grown in common across the three environments: PI 674263, AC-NL, AH-TL, and Madiira 1.

Increasing Access: Peri-Urban; Urban, Schools

Evaluating Sack-Gardens: Tumaini Center for Street Boys, Kenya

Lesson 9: Linking to Youth by providing training in AIV production, can create entry point to new generation, urban settings and reach more families for accessing fresh healthy produce and possible new income generation opportunities

Acknowledgements & Our Horticultural Nutrition R&D Team:

Led by Rutgers University and Purdue University:

Jim Simon, PI, Rutgers, Horticulture, Breeding, Natural Products and Nutrition Steve Weller, co-PI, Purdue, Horticulture/ **Production Systems** Dan Hoffman, co-PI, Human Nutrition Ramu Govindasamy, co-PI, Economics, Marketing, Consumer studies David Byrnes, Program Coordinator and PhD student Qingli Wu, Chemistry, Pharmagnosy and nutrition of AIVs Xenia Morin, Gender and development Albert Ayeni, Organic production Ph.D. Graduate Students: David Byrnes, Ariane Vasitalis, Bo Yuan, Bernie Somers; William Reichert, Emily Roglalsky; and Surendran Arumugam (postdoc); MS: Mara Sanders **Purdue:**

Steve Yaninek (Pest Management)

Kenya AMPATH and Moi University: Naman Nyabinda Norah Maiyo

University of Eldoret: Linnet Gohole Angeline Mnene (MS student)

Kenya Agric. Res. Institute (KALRO): Christine Ndinya Martins Odendo

WorldVeg Center, Tanzania: Fekadu Dinssa Victor Afari-Sefa Hassan Mndiga Zambia: AgriSmart Emil Van Wyk Lupiya Sakala Muunga Mapenzi Inonge Siziya (MS student, UNZA) Kenneth Chali

University of Zambia John Shidano

Catholic Relief Services, MAWA

UC-Davis:USAID: Beth Mitcham Britta Hanson

John Bowman

